
COMPUTER SCIENCE & TECHNOLOGY SERIES 53

Power Characterisation of Shared-Memory HPC

Systems†

JAVIER BALLADINI
1
, ENZO RUCCI

2
, ARMANDO DE GIUSTI

2,4
,

 MARCELO NAIOUF
2

, REMO SUPPI
3
, DOLORES REXACHS

3

AND EMILIO LUQUE
3

1
 Department of Computer Engineering, Universidad Nacional del Comahue

Buenos Aires 1400, 8300 Neuquén, Argentina
javier.balladini@fi.uncoma.edu.ar

2
 III LIDI, Facultad de Informática, Universidad Nacional de La Plata

Calle 50 y 120, 1900 La Plata (Buenos Aires), Argentina
{erucci, degiusti, mnaiouf}@lidi.info.unlp.edu.ar

3
 Department of Computer Architecture and Operating Systems, Universitat

Autònoma de Barcelona
Campus UAB, Edifici Q, 08193 Bellaterra (Barcelona), Spain

{remo.suppi, dolores.rexachs, emilio.luque}@uab.es
4 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

Abstract. Energy consumption has become one of the greatest

challenges in the field of High Performance Computing (HPC). Besides

its impact on the environment, energy is a limiting factor for the HPC.

Keeping the power consumption of a system below a threshold is one of

the great problems; and power prediction can help to solve it. The

power characterisation can be used to know the power behaviour of the

system under study, and to be a support to reach the power prediction.

Furthermore, it could be used to design power-aware application

programs. In this article we propose a methodology to characterise the

power consumption of shared-memory HPC systems. Our proposed

methodology involves the finding of influence factors on power

consumed by the systems. It is similar to previous works, but we propose

an in-deep approach that can help us to get a better power

characterisation of the system. We apply our methodology to

characterise an Intel server platform and the results show that we can

find a more extended set of influence factors on power consumption.

Keywords: power characterisation, shared memory systems,

microbenchmarks, green computing.

1. Introduction

High Performance Computing (HPC) has had for decades the only goal of

increasing the processing speed of computationally complex applications

such as scientific applications. Supercomputers were designed exclusively

with the aim of increasing the number of floating point operations per second

54 XVIII ARGENTINE CONGRESS OF COMPUTER SCIENCE

(FLOPS). This is reflected in the TOP500 list [13], which uses the FLOPS

metric to determine the ranking of supercomputers. The performance and the

trade-off price/performance were the most important objectives.

Thus, this led to the appearance of supercomputers that consume vast

amounts of electrical power and produce so much heat that large cooling

facilities must be constructed to ensure proper performance. According to the

Lawrence Livermore National Laboratory (LLNL), for every watt (W) of

energy consumed, 0.7 W is spent in cooling to dissipate the energy. The

energy consumption of current supercomputers is so high that it produces a

huge economic impact. In 2005, annual spending in electrical energy at

LLNL was of 14.6 million dollars [8]. Currently, the fastest supercomputer in

the world (according to TOP500) has a power of 7.7 MW. The energy

consumption not only has an economic impact, it also affects the ecology and

society due to the lack of exploitation of renewable and clean energy.

In 2007 the first list of the Green500 [9] was published, ranking the most

energy-efficient supercomputers in the world. Thus, the new era of green

computing began, avoiding the focus of performance-at-any-cost. Today, the

TOP500 is not the only interesting ranking, but also the Green500.

Keeping the power consumption of a system below a threshold is a great

challenge for HPC, motivated by the following reasons, among others. As an

energy deficit can lead to service disruptions, the energy consumption below

the available energy must be maintained. In addition, in order to improve

system load factor, energy suppliers often provide electricity in low-load

periods at a relatively low cost. They may also provide incentives, through

conservation and load management programs, to encourage elimination or

shifting of peak loads [5]. In case a computing centre is supplied by a

intermittent renewable energy source (for example: wind or solar farms), the

energy output from the power plant increases or decreases over time and the

demand of the computing centre must change accordingly. All these reasons

justify the necessity to accurately predict how changes in computing system

parameters and utilisation will impact future power consumption.

It may be possible to predict the power using any of the following two

approaches. One approach would be to perform an initial training phase in

which the application is running at various system parameters and utilisation

while the power is measured and recorded. This information can then be used

to predict power in new application program executions. Another approach

could be to identify different application phases and to search for historical

power data of microbenchmarks that match with these identified phases. If

the identified phases do not exist in the history, new microbenchmarks are

added together with their power information.

The first approach does not seem to be difficult to achieve. However,

unfortunately, the production systems do not enable (accurate and fine

grained) power measurements (for the moment) because it increases costs

due to board space constraints and the need for additional components. In

absence of direct power measurement, the commonly used alternative is to

make power models. The basic idea behind power modelling is to take as

input some Performance Monitoring Counters (PMCs) and software counters

and use those to calculate power consumption. Previous works [4,10,7,6,12]

COMPUTER SCIENCE & TECHNOLOGY SERIES 55

calculate the total system power consumption using several learning techniques

such as linear regression, recursive learning automata, and stochastic power

models. There are many different hardware counters that can be tracked, while

only a few can be tracked simultaneously. Thus, we have the problem to choice

the best counters that will result in an accurate model. A power characterisation

of computing system could be used to judiciously select these counters.

In the second approach, microbenchmarks must be generalised in order to

match them with a major number of applications phases. A power

characterisation of the system is also necessary to make this generalisation.

Furthermore, a power characterisation could be used to design power-aware

application programs.

In this article we propose a methodology to characterise the power

consumption of shared-memory HPC systems. Our proposed methodology

involves the finding of influence factors on power consumed by the systems,

that is, a sensitivity analysis of workload properties and system parameters on

the power behaviour. The workload considers the computation and

communication aspects of applications while disk input/output operations are

excluded due to being a large issue to be discussed beside computation.

Our methodology is similar to previous works [4,10], but we propose an in-

deep approach of the impact of workload properties on power consumption.

This study can help us to get a better power characterisation of system

computation.

The remaining of this article is organised as follows. Section 2 exposes the

methodology overview used to characterise the power consumption of shared-

memory HPC systems. Sections 3, 4, 5 and 6 describe the methodology's

phases and present a case of study. Finally, section 7 discusses the conclusions

and future works.

2. Methodology Overview

Our methodology explores influence factors of workload properties and

system parameters. The methodology consists of four phases:

1. Identification of system architecture components and parameters. The

use of different parts of hardware and system parameters normally

produce different power consumption, so it is necessary to first

determine what are the components that make up the architecture and

the configurable parameters of the system under study.

2. Development of microbenchmarks. Building of small synthetic

applications, called microbenchmarks, whose operations stress and

evaluate special features of each architectural component.

3. Test Cases Creation and Electrical Power Measurement.

Instrumentation of the HPC system with a power meter, and

measurement of the power used to compute the microbenchmarks at

different system parameters.

56 XVIII ARGENTINE CONGRESS OF COMPUTER SCIENCE

4. Finding of Power-Influence Factors. Identification of influence

factors based on measurement result analysis.

The phases are further explained and supported by a case of study in sections

3, 4, 5 and 6.

3. Phase I: Identification of System Architecture

Components and Parameters

A computer consists of a set of components or modules of three basic types

that communicate with each other: processor, memory and Input/Output

(I/O). So, as we are focused on computation but not the I/O phases of

programs, we can determine three system aspects (excluding I/O) to analyse:

1. CPU's functional units. Multi-core processors are composed of

several cores (or CPUs, Central Processing Unit), and a core include

several independent functional units such as Integer Unit, Floating-

Point Unit, Branch Processing Unit, etc. These units inside a core

are candidates to consume different power.

2. Data access. A shared memory system provides a global physical

address space accessed from any core, and a design key issue of

these systems is in the organisation of the memory hierarchy. The

cores may have access to a central shared memory (UMA -Uniform

Memory Access-), or may participate in a memory hierarchy with

both local and shared memory (NUMA -Non-Uniform Memory

Access-). Common memory organisations use shared caches, buses,

and interconnection networks, and we need to evaluate the influence

on power consumption of these parts.

3. System Parameters. The parameters of the system that can modify

the power are mainly divided in two types: Resource Hibernation

and Dynamic Voltage Scaling.

a. Resource Hibernation: The computer components consume

power even when idle. Thus, the technique of resource

hibernation turns off or disconnects components in idle

moments. The components that can be hibernated depend

on each system and can include: hard disks, cores, network

interface cards, and memories.

b. Dynamic Voltage Scaling (DVS): Reducing the supply

voltage reduces power consumption. However, it increases

the delay of logic gates, so that the clock frequency should

be reduced to allow the circuit to work properly. Current

systems allow us to change the CPU's voltage/clock-

frequency and it is clearly a factor to analyse.

In particular, as a case of study, we evaluate the parallel platform Intel Server

System SC5650BCDP, a dual socket with dual core Intel Xeon E5502 [1]

COMPUTER SCIENCE & TECHNOLOGY SERIES 57

processors and 16GB of main memory (8GB per socket). Figure 1 shows the

architecture and memory hierarchy, including memory sizes, of the parallel system.

It is a NUMA system, each processor has an integrated memory controller,

and the interconnection system between processors is the Intel QuickPath

Interconnect (QPI), which provides high-speed, point-to-point links. The

available CPU's clock frequencies are: 1.6, 1.73 and 1.86 GHz. For the best

of our knowledge, the system does not support physical hot-plug of

memories.

The processor supports low power states (C-states) at individual core. On the

contrary, Intel Turbo Boost technology is not supported by E5502 processors.

Fig. 1. Architecture and memory hierarchy of the system under study.

Fig. 2. Measurement connection diagram.

COMPUTER SCIENCE & TECHNOLOGY SERIES 58

4. Phase II: Development of Microbenchmarks

After identifying what are the components that make up the architecture under

study, we developed a set of microbenchmarks that allow us to characterise it.

The microbenchmarks were developed using language C, gcc compiler version

4.6.3, under GNU/Linux with Pthreads library for threads management. To

guarantee that the compiler does not affect the microbenchmark's purpose,

assembler codes generated by it were verified using the objdump command (with

-d option).

Each microbenchmark launches four threads, where each thread runs a loop

executing between 1 and 2.5 Gigaoperations. Taking into account the hardware

characteristic of the support architecture, we consider the next factors at the time

of developing the microbenchmarks:

Operation and Data Type. Different operations on different data types have

different complexity hardware implementation. We developed microbenchmarks

for add, multiply and division operations. Also, four special microbenchmarks

were developed. The first one evaluates the cost of performing no specific

operation. The rest of them evaluate the cost of performing a complex operation

that involves other simpler ones. Data is read from three vectors accessed

sequentially (stride = 1). The data types used are: int (32-bit integer), float (32-bit

floating point) and double (64-bit floating point).

Operands Accessing Mode. Load and store instructions have different

computational cost. It is interesting to study what occurs with power. We

developed two microbenchmarks: one that only executes load instructions and

one that only executes store instructions.

Non-Uniform Memory Access. The support architecture has a common

memory address space, but the accesses may be local or foreign. The foreign

access uses QPI interconnection link. Thus, we developed two microbenchmarks

that write data in main memory: one with local access and one with foreign

access.

Resources Usage Efficiency. Systems are often scheduled incorrectly and, as a

result, resources usage efficiency decreases. We developed two

microbenchmarks to study the power influence of this factor: an efficient one and

an inefficient one. Both microbenchmarks write data in memory but they differ in

the number of used cores. The efficient microbenchmark uses all the cores of the

architecture used, while the inefficient microbenchmark use only one of them.

Parallel Programming Model. Programming models differ on the way of

dealing process communication and synchronisation, either as shared memory or

distributed memory. OpenMP is the most widely used model on shared memory,

while MPI is the corresponding for distributed memory. We used the NAS

Parallel Benchmarks (NPB) [2], implemented both in OpenMP and MPI, to

evaluate the parallel application programming model influence on parallel

architectures power. We selected the CG, IS and EP benchmarks which are

computation bound, and the MG benchmark which is communication bound

[11]. We selected only these benchmarks because the others (NPB) do not

provide additional information for our objective. We determined the benchmarks

problem size so that its main memory requirements for execution are met and

COMPUTER SCIENCE & TECHNOLOGY SERIES 59

memory swapping never happens. Particularly, we chose a class C problem

size defined by the specification of the NPB.

Cache Friendliness. The access to the memories of parallel machines

(implemented with different technologies and placed at different locations) is

a candidate to be a power influence factor. The developed microbenchmarks

can be classified into two groups. The first group microbenchmarks are cache

friendly, that is, they have a good cache hit rate. The second group

microbenchmarks are not cache friendly, that is, they have bad cache

performance at all the levels. The cache friendly microbenchmarks work with

a data set smaller than the L1 cache size. The data set size of the no cache

friendly microbenchmarks is bigger than the L3 cache size.

In a first stage, we focused on intensive use of the CPU, so we have left the

analysis of the C-states (as a power influence factor) for the future. Table 1

shows a description of some of the developed microbenchmarks. Input

parameters are: Characteristic Memory Access Pattern, Data Type,

Characteristic Basic Operation, Cache Friendliness, Parallelism Level and

Clock Frequency. The Characteristic Memory Access Pattern indicates the

data structures used by the microbenchmark and how they are accessed by it.

The Data Type parameter indicates the data type of the data structures that

were defined in previous column. The Characteristic Basic Operation

parameter represents the operation performed by each thread of the

microbenchmark. The Cache Friendliness parameter indicates whether the

microbenchmark is cache friendly or not. The Parallelism Level parameter is

adjusted to the number of cores of the support architecture (one thread per

core). The Clock Frequency parameter depends on the available processors

clock frequencies. Different executions for different k1, k2 and fi values were

done. In all the cases, each thread performs the same basic operation on its

own data set.

60 XVIII ARGENTINE CONGRESS OF COMPUTER SCIENCE

Table 1. Some developed microbenchmarks.

Microbenchmark

Charac-

teristic
Memory

Access

Pattern

Data

Type

Characteristic Basic

Operation

Cache
Friend

-liness

Para-
llelism

Level

Clock
Fre-

quency

addFloatCache
a,b,c:

 stride-1
Float Yes 4 fi

divDoubleMem
a,b,c:

stride-1
Double No 4 fi

storeDoubleCache
a,b:

stride-1
Double Yes 4 fi

loadDoubleCache
a,b:

stride-1
Double Yes 4 fi

noOpIntCache
a,b, c:

stride-1
Int Yes 4 fi

multiOpIntCache
a,b,c:

stride-1
Int

Yes 4 fi

multiAddIntCache
a,b,c:

stride-1
Int

Yes 4 fi

umaFloatCache
a,b,c:

stride-1
Float

Yes 4 fi

efficientFloatCache
a,b,c:

stride-1
Float Yes 4 fi

inefficientFloatCache
a,b,c:

stride-1
Float Yes 1 fi

… … … … … … …

5. Phase III: Test Cases Creation and Electrical Power

Measurement

Once the microbenchmarks are developed, the next step is the creation of test

cases. Test cases are written using bash scripts that execute combinations of

microbenchmarks and system parameters. Once the HPC system is

instrumented with the power meter, the test cases are run and measured.

Following, we explain how to scale the clock frequency using a bash

command, and later we expose the power measurement methodology.

5.1 System Parameter: Clock Frequency Scaling

Modern general purpose processors can scale the frequency of each core

individually. Access is through the Advanced Configuration and Power

Interface (ACPI). It is possible to know, for a given core, the available

frequencies and the frequency currently in use, respectively, reading the

following two files in GNU/Linux:
/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_

frequencies

/sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq

COMPUTER SCIENCE & TECHNOLOGY SERIES 61

To change the frequency it is possible to use cpufreq-selector command. For

example, running the command “cpufreq-selector -c 0 -f 1000000”

the core number 0 is set to 1 GHz.

5.2 Power Measurement Methodology

This section explains some definitions about power and energy, and the

methodology typically used to measure the electrical power of a whole

system, detailing the instruments utilised by us.

Power is the rate at which the system consumes electrical energy. The watt

(W) is the unit of real power, equivalent to 1 joule by second (1 J/s), and it is

the product of current times voltage. Energy is the total amount of electrical

energy that the system consumes over time, and is measured in joules or

watt-hour (Wh).

We are interested in power; and energy can be calculated by integrating

power over time. We measure the power consumption of the whole shared-

memory HPC system. For this, we use the oscilloscope PicoScope 2203, the

TA041 active differential oscilloscope probe, and the PP264 60 A AC/DC

current clamp, all products of Pico Technology. The electrical signals

captured by the dual-channel PicoScope 2203 are transmitted in real-time via

USB to a laptop. The voltage is measured using the TA041 probe that is

connected to one oscilloscope's input channel. The current of the phase

conductor is measured using the PP264 current probe that is connected to the

other input channel of the oscilloscope. Then, power is calculated as the

product of measured voltage and current. The sample rate for the experiments

was of 1000 Hz. Figure 2 shows the measurement connection diagram.

6. Phase IV: Finding of Power-Influence Factors

After running and measuring test cases, we proceed to find power-influence

factors. Figure 3 shows the average power for the microbenchmarks

developed to evaluate “Operation and Data Type” and “Cache Friendliness”

factors. The microbenchmarks run at the maximum clock frequency. It can be

observed that microbenchmarks with bad cache performance produce higher

average power. Regarding the “Operation and Data Type” factor, it can be

seen that the operation to perform has no significant impact on int data type,

except when the operation is composed of multiple ones (multiOp, multiAdd

and multiDiv). While floating point data types (float and double) have

different size, their power behaviour are similar. Also, it can be seen that the

operation to perform impacts on the average power produced, being these

values generally lower than those for int microbenchmarks.

The influence of “Data Type”, “Operands Accessing Mode” and “Cache

Friendliness” factors are analysed in Figure 4. This chart shows the average

power for the microbenchmarks developed to evaluate those factors at the

maximum clock frequency. It can be observed that average power for load

62 XVIII ARGENTINE CONGRESS OF COMPUTER SCIENCE

and store microbenchmarks are similar when the cache has a good

performance but this similarity does not maintain when cache miss rate

increases. It can be seen that store instructions performed in main memory

produces higher average power, particularly when using int and double data

types.

Figure 5 shows the average power for “Non-Uniform Memory Access” and

“Cache Friendliness” microbenchmarks at the maximum clock frequency. It

can be observed that average power hardly varies when the cache

performance is good. In the opposite situation, that is when the cache has a

bad performance, the use of the QPI interconnection link decreases average

power.

Figure 6 allow us to evaluate the power influence of “Resources Usage

Efficiency” and “Cache Friendliness” factors. This chart shows the average

power for the microbenchmarks developed to evaluate those factors at the

maximum clock frequency. It can be seen that average power increases when

resources are used efficiently, beyond the cache performance.

The “Parallel Programming Model” influence factor is analysed in Figure 7.

This chart shows the average power for each NAS benchmark executed at the

maximum clock frequency. It can be observed that the programming model

practically has no impact on the average power of each benchmark tested.

Fig. 3. Influence of “Operation and Data Type” and “Cache Friendliness”.

”.

Fig. 4. Influence of “Operands Accessing Mode” and “Cache Friendliness”.

Fig. 5. Influence of “Non-Uniform Memory Access” and “Cache

Friendliness”.

COMPUTER SCIENCE & TECHNOLOGY SERIES 63

Fig. 6. Influence of “Resources Usage Efficiency” and “Cache Friendliness”.

Fig. 7. Influence of “Parallel Programming Model

Fig. 8. Influence of “Voltage and Frequency Scaling” and “Cache Friendliness”.

Figure 8 allow us to assess the influence of “Cache Friendliness” and

“Voltage and Frequency Scaling” factors. This chart shows the average

power for int microbenchmarks with good and bad cache performance at

different clock frequencies (for readability only four microbenchmarks are

shown). It can be seen that average power increases when the clock

frequency increases, regardless the cache performance.

From previous analysis, we can confirm the influence of the studied

factors on the average power of the support architecture:

 When working with floating point data types (float or double), the

operation to perform must be taken into account because it

influences the produced average power. It does not occur the same

with int data type. Beyond data type used, the ratio of the number of

mathematical operations to the number of data read from main

memory must be a factor to consider.

 When the cache has a good performance, local and foreign accesses

have similar power behaviours. Nevertheless, when cache

64 XVIII ARGENTINE CONGRESS OF COMPUTER SCIENCE

performance is bad, foreign accesses produce lower average power

than local accesses.

 Increase the efficiency in resources usage produces higher average

power.

 The parallel programming model is not a power influence factor

(although it is an energy influence factor as we analysed in [3]).

 The cache performance has no influence on the average power

produced by load instructions. However, store instructions produces

higher average power when they are performed in main memory,

particularly when int and double data types are used.

 Beyond the operands accessing mode, the operation to perform, the

data type, the parallel programming model and the cache

performance, the average power increases when the clock frequency

increases.

7. Conclusions and Future Works

In this work we present a methodology to characterise the power

consumption of shared-memory HPC systems. The power characterisation

can be used to know the power behaviour of the system under study in order

to design power-aware application programs, and to be a support to reach the

power prediction. We apply our methodology to characterise an Intel server

platform and the results show that we can find an extended set of influence

factors on power consumption.

As future works, we will analyse the influence of C-states on power

consumption of our platform. Later, we plan to find a way to automatically

characterize a system, following our methodology. Furthermore, we will

continue working on power prediction of HPC systems using the information

obtained with the power characterisations.

References

1. Intel E5500 datasheet - Vol 1 (Accessed on 2012),

http://www.intel.com/content/www/us/en/processors/xeon/xeon-5500-

vol-1-datasheet.html.

2. NAS Parallel Benchmarks (Accessed on 2012),

http://www.nas.nasa.gov/publications/npb.html.

3. Balladini, J., Suppi, R., Rexachs, D., Luque, E.: Impact of parallel

programming models and cpus clock frequency on energy consumption of

hpc systems. In: AICCSA. pp. 16-21 (2011).

4. Bircher, W.L., John, L.K.: Complete system power estimation using processor

performance events. IEEE Transactions on Computers 61, 563-577 (2012).

5. Capehart, B.L. (ed.): Encyclopedia of Energy Engineering and Technology.

CRC Press (2007).

http://www.intel.com/content/www/us/en/processors/xeon/xeon-5500-vol-1-datasheet.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-5500-vol-1-datasheet.html

COMPUTER SCIENCE & TECHNOLOGY SERIES 65

6. Contreras, G.: Power prediction for intel xscale processors using

performance monitoring unit events. In: In Proceedings of the

International symposium on Low power electronics and design (ISLPED.

pp. 221-226. ACM Press (2005).

7. Economou, D., Rivoire, S., Kozyrakis, C.: Full-system power analysis

and modeling for server environments. In: In Workshop on Modeling

Benchmarking and Simulation (MOBS (2006).

8. Feng, W.C.: The importance of being low power in high-performance

computing. Cyberinfrastructure Technology Watch Quarterly 1 (3) (August

2005).

9. The Green500 website (Accessed on 2012), http://www.green500.org/.

10. Jiménez, V., Cazorla, F.J., Gioiosa, R., Valero, M., Boneti, C., Kursun,

E., Cher, C.Y., Isci, C., Buyuktosunoglu, A., Bose, P.: Power and thermal

characterization of power6 system. In: Proceedings of the 19th

international conference on Parallel architectures and compilation

techniques. pp. 7-18. PACT '10, ACM (2010).

11. Jin, H., Hood, R., Chang, J., Djomehri, J., Jespersen, D., Taylor, K.:

Characterizing application performance sensitivity to resource contention

in multicore architectures. Tech. rep., NASA Advanced Supercomputing

(NAS) Division (2009).

12. Qiu, Q., Wu, Q., Pedram, M.: Stochastic modeling of a power-managed

system: construction and optimization. In: Proceedings of the 1999 international

symposium on Low power electronics and design. pp. 194-199. ISLPED

'99 (1999).

13. The TOP500 website (Accessed on 2012), http://www.top500.org/.

