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Abstract. Energy consumption has become one of the greatest 

challenges in the field of High Performance Computing (HPC). Besides 

its impact on the environment, energy is a limiting factor for the HPC. 

Keeping the power consumption of a system below a threshold is one of 

the great problems; and power prediction can help to solve it. The 

power characterisation can be used to know the power behaviour of the 

system under study, and to be a support to reach the power prediction. 

Furthermore, it could be used to design power-aware application 

programs. In this article we propose a methodology to characterise the 

power consumption of shared-memory HPC systems. Our proposed 

methodology involves the finding of influence factors on power 

consumed by the systems. It is similar to previous works, but we propose 

an in-deep approach that can help us to get a better power 

characterisation of the system. We apply our methodology to 

characterise an Intel server platform and the results show that we can 

find a more extended set of influence factors on power consumption. 

Keywords: power characterisation, shared memory systems, 

microbenchmarks, green computing. 

1.  Introduction 

High Performance Computing (HPC) has had for decades the only goal of 

increasing the processing speed of computationally complex applications 

such as scientific applications. Supercomputers were designed exclusively 

with the aim of increasing the number of floating point operations per second 
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(FLOPS). This is reflected in the TOP500 list [13], which uses the FLOPS 

metric to determine the ranking of supercomputers. The performance and the 

trade-off price/performance were the most important objectives.  

Thus, this led to the appearance of supercomputers that consume vast 

amounts of electrical power and produce so much heat that large cooling 

facilities must be constructed to ensure proper performance. According to the 

Lawrence Livermore National Laboratory (LLNL), for every watt (W) of 

energy consumed, 0.7 W is spent in cooling to dissipate the energy. The 

energy consumption of current supercomputers is so high that it produces a 

huge economic impact. In 2005, annual spending in electrical energy at 

LLNL was of 14.6 million dollars [8]. Currently, the fastest supercomputer in 

the world (according to TOP500) has a power of 7.7 MW. The energy 

consumption not only has an economic impact, it also affects the ecology and 

society due to the lack of exploitation of renewable and clean energy. 

In 2007 the first list of the Green500 [9] was published, ranking the most 

energy-efficient supercomputers in the world. Thus, the new era of green 

computing began, avoiding the focus of performance-at-any-cost. Today, the 

TOP500 is not the only interesting ranking, but also the Green500. 

Keeping the power consumption of a system below a threshold is a great 

challenge for HPC, motivated by the following reasons, among others. As an 

energy deficit can lead to service disruptions, the energy consumption below 

the available energy must be maintained. In addition, in order to improve 

system load factor, energy suppliers often provide electricity in low-load 

periods at a relatively low cost. They may also provide incentives, through 

conservation and load management programs, to encourage elimination or 

shifting of peak loads [5]. In case a computing centre is supplied by a 

intermittent renewable energy source (for example: wind or solar farms), the 

energy output from the power plant increases or decreases over time and the 

demand of the computing centre must change accordingly. All these reasons 

justify the necessity to accurately predict how changes in computing system 

parameters and utilisation will impact future power consumption. 

It may be possible to predict the power using any of the following two 

approaches. One approach would be to perform an initial training phase in 

which the application is running at various system parameters and utilisation 

while the power is measured and recorded. This information can then be used 

to predict power in new application program executions. Another approach 

could be to identify different application phases and to search for historical 

power data of microbenchmarks that match with these identified phases. If 

the identified phases do not exist in the history, new microbenchmarks are 

added together with their power information. 

The first approach does not seem to be difficult to achieve. However, 

unfortunately, the production systems do not enable (accurate and fine 

grained) power measurements (for the moment) because it increases costs 

due to board space constraints and the need for additional components. In 

absence of direct power measurement, the commonly used alternative is to 

make power models. The basic idea behind power modelling is to take as 

input some Performance Monitoring Counters (PMCs) and software counters 

and use those to calculate power consumption. Previous works [4,10,7,6,12] 
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calculate the total system power consumption using several learning techniques 

such as linear regression, recursive learning automata, and stochastic power 

models. There are many different hardware counters that can be tracked, while 

only a few can be tracked simultaneously. Thus, we have the problem to choice 

the best counters that will result in an accurate model. A power characterisation 

of computing system could be used to judiciously select these counters. 

In the second approach, microbenchmarks must be generalised in order to 

match them with a major number of applications phases. A power 

characterisation of the system is also necessary to make this generalisation. 

Furthermore, a power characterisation could be used to design power-aware 

application programs.  

In this article we propose a methodology to characterise the power 

consumption of shared-memory HPC systems. Our proposed methodology 

involves the finding of influence factors on power consumed by the systems, 

that is, a sensitivity analysis of workload properties and system parameters on 

the power behaviour. The workload considers the computation and 

communication aspects of applications while disk input/output operations are 

excluded due to being a large issue to be discussed beside computation. 

Our methodology is similar to previous works [4,10], but we propose an in-

deep approach of the impact of workload properties on power consumption. 

This study can help us to get a better power characterisation of system 

computation. 

The remaining of this article is organised as follows. Section 2 exposes the 

methodology overview used to characterise the power consumption of shared-

memory HPC systems. Sections 3, 4, 5 and 6 describe the methodology's 

phases and present a case of study. Finally, section 7 discusses the conclusions 

and future works. 

2.  Methodology Overview 

Our methodology explores influence factors of workload properties and 

system parameters. The methodology consists of four phases: 

1. Identification of system architecture components and parameters. The 

use of different parts of hardware and system parameters normally 

produce different power consumption, so it is necessary to first 

determine what are the components that make up the architecture and 

the configurable parameters of the system under study. 

2. Development of microbenchmarks. Building of small synthetic 

applications, called microbenchmarks, whose operations stress and 

evaluate special features of each architectural component. 

3. Test Cases Creation and Electrical Power Measurement. 

Instrumentation of the HPC system with a power meter, and 

measurement of the power used to compute the microbenchmarks at 

different system parameters. 
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4. Finding of Power-Influence Factors. Identification of influence 

factors based on measurement result analysis. 

The phases are further explained and supported by a case of study in sections 

3, 4, 5 and 6. 

3. Phase I: Identification of System Architecture 

Components and Parameters 

A computer consists of a set of components or modules of three basic types 

that communicate with each other: processor, memory and Input/Output 

(I/O). So, as we are focused on computation but not the I/O phases of 

programs, we can determine three system aspects (excluding I/O) to analyse:  

1. CPU's functional units. Multi-core processors are composed of 

several cores (or CPUs, Central Processing Unit), and a core include 

several independent functional units such as Integer Unit, Floating-

Point Unit, Branch Processing Unit, etc. These units inside a core 

are candidates to consume different power. 

2. Data access. A shared memory system provides a global physical 

address space accessed from any core, and a design key issue of 

these systems is in the organisation of the memory hierarchy. The 

cores may have access to a central shared memory (UMA -Uniform 

Memory Access-), or may participate in a memory hierarchy with 

both local and shared memory (NUMA -Non-Uniform Memory 

Access-). Common memory organisations use shared caches, buses, 

and interconnection networks, and we need to evaluate the influence 

on power consumption of these parts. 

3. System Parameters. The parameters of the system that can modify 

the power are mainly divided in two types: Resource Hibernation 

and Dynamic Voltage Scaling. 

a. Resource Hibernation: The computer components consume 

power even when idle. Thus, the technique of resource 

hibernation turns off or disconnects components in idle 

moments. The components that can be hibernated depend 

on each system and can include: hard disks, cores, network 

interface cards, and memories. 

b. Dynamic Voltage Scaling (DVS): Reducing the supply 

voltage reduces power consumption. However, it increases 

the delay of logic gates, so that the clock frequency should 

be reduced to allow the circuit to work properly. Current 

systems allow us to change the CPU's voltage/clock-

frequency and it is clearly a factor to analyse. 

In particular, as a case of study, we evaluate the parallel platform Intel Server 

System SC5650BCDP, a dual socket with dual core Intel Xeon E5502 [1] 
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processors and 16GB of main memory (8GB per socket). Figure 1 shows the 

architecture and memory hierarchy, including memory sizes, of the parallel system. 

It is a NUMA system, each processor has an integrated memory controller, 

and the interconnection system between processors is the Intel QuickPath 

Interconnect (QPI), which provides high-speed, point-to-point links. The 

available CPU's clock frequencies are: 1.6, 1.73 and 1.86 GHz. For the best 

of our knowledge, the system does not support physical hot-plug of 

memories. 

The processor supports low power states (C-states) at individual core. On the 

contrary, Intel Turbo Boost technology is not supported by E5502 processors. 

 

 

 

 

Fig. 1. Architecture and memory hierarchy of the system under study.  

 

 

Fig. 2. Measurement connection diagram. 
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4.  Phase II: Development of Microbenchmarks 

After identifying what are the components that make up the architecture under 

study, we developed a set of microbenchmarks that allow us to characterise it. 

The microbenchmarks were developed using language C, gcc compiler version 

4.6.3, under GNU/Linux with Pthreads library for threads management. To 

guarantee that the compiler does not affect the microbenchmark's purpose, 

assembler codes generated by it were verified using the objdump command (with 

-d option). 

Each microbenchmark launches four threads, where each thread runs a loop 

executing between 1 and 2.5 Gigaoperations. Taking into account the hardware 

characteristic of the support architecture, we consider the next factors at the time 

of developing the microbenchmarks: 

Operation and Data Type. Different operations on different data types have 

different complexity hardware implementation. We developed microbenchmarks 

for add, multiply and division operations. Also, four special microbenchmarks 

were developed. The first one evaluates the cost of performing no specific 

operation. The rest of them evaluate the cost of performing a complex operation 

that involves other simpler ones. Data is read from three vectors accessed 

sequentially (stride = 1). The data types used are: int (32-bit integer), float (32-bit 

floating point) and double (64-bit floating point). 

Operands Accessing Mode. Load and store instructions have different 

computational cost. It is interesting to study what occurs with power. We 

developed two microbenchmarks: one that only executes load instructions and 

one that only executes store instructions. 

Non-Uniform Memory Access. The support architecture has a common 

memory address space, but the accesses may be local or foreign. The foreign 

access uses QPI interconnection link. Thus, we developed two microbenchmarks 

that write data in main memory: one with local access and one with foreign 

access. 

Resources Usage Efficiency. Systems are often scheduled incorrectly and, as a 

result, resources usage efficiency decreases. We developed two 

microbenchmarks to study the power influence of this factor: an efficient one and 

an inefficient one. Both microbenchmarks write data in memory but they differ in 

the number of used cores. The efficient microbenchmark uses all the cores of the 

architecture used, while the inefficient microbenchmark use only one of them. 

Parallel Programming Model. Programming models differ on the way of 

dealing process communication and synchronisation, either as shared memory or 

distributed memory. OpenMP is the most widely used model on shared memory, 

while MPI is the corresponding for distributed memory. We used the NAS 

Parallel Benchmarks (NPB) [2], implemented both in OpenMP and MPI, to 

evaluate the parallel application programming model influence on parallel 

architectures power. We selected the CG, IS and EP benchmarks which are 

computation bound, and the MG benchmark which is communication bound 

[11]. We selected only these benchmarks because the others (NPB) do not 

provide additional information for our objective. We determined the benchmarks 

problem size so that its main memory requirements for execution are met and 
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memory swapping never happens. Particularly, we chose a class C problem 

size defined by the specification of the NPB. 

Cache Friendliness. The access to the memories of parallel machines 

(implemented with different technologies and placed at different locations) is 

a candidate to be a power influence factor. The developed microbenchmarks 

can be classified into two groups. The first group microbenchmarks are cache 

friendly, that is, they have a good cache hit rate. The second group 

microbenchmarks are not cache friendly, that is, they have bad cache 

performance at all the levels. The cache friendly microbenchmarks work with 

a data set smaller than the L1 cache size. The data set size of the no cache 

friendly microbenchmarks is bigger than the L3 cache size. 

In a first stage, we focused on intensive use of the CPU, so we have left the 

analysis of the C-states (as a power influence factor) for the future. Table 1 

shows a description of some of the developed microbenchmarks. Input 

parameters are: Characteristic Memory Access Pattern, Data Type, 

Characteristic Basic Operation, Cache Friendliness, Parallelism Level and 

Clock Frequency. The Characteristic Memory Access Pattern indicates the 

data structures used by the microbenchmark and how they are accessed by it. 

The Data Type parameter indicates the data type of the data structures that 

were defined in previous column. The Characteristic Basic Operation 

parameter represents the operation performed by each thread of the 

microbenchmark. The Cache Friendliness parameter indicates whether the 

microbenchmark is cache friendly or not. The Parallelism Level parameter is 

adjusted to the number of cores of the support architecture (one thread per 

core). The Clock Frequency parameter depends on the available processors 

clock frequencies. Different executions for different k1, k2 and fi values were 

done. In all the cases, each thread performs the same basic operation on its 

own data set. 
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Table 1.  Some developed microbenchmarks.  

Microbenchmark 

Charac-

teristic 
Memory 

Access 

Pattern 

Data 

Type 

Characteristic Basic 

Operation 

Cache 
Friend

-liness 

Para-
llelism 

Level 

Clock 
Fre-

quency 

addFloatCache 
a,b,c: 

 stride-1 
Float  Yes 4 fi 

divDoubleMem 
a,b,c:  

stride-1 
Double  No 4 fi 

storeDoubleCache 
a,b:  

stride-1 
Double  Yes 4 fi 

loadDoubleCache 
a,b:  

stride-1 
Double  Yes 4 fi 

noOpIntCache 
a,b, c:  

stride-1 
Int  Yes 4 fi 

multiOpIntCache 
a,b,c:  

stride-1 
Int 

 

 
Yes 4 fi 

multiAddIntCache 
a,b,c:  

stride-1 
Int 

 

 
Yes 4 fi 

umaFloatCache 
a,b,c:  

stride-1 
Float 

 

 
Yes 4 fi 

efficientFloatCache 
a,b,c:  

stride-1 
Float  Yes 4 fi 

inefficientFloatCache 
a,b,c:  

stride-1 
Float  Yes 1 fi 

… … … … … … … 

5.  Phase III: Test Cases Creation and Electrical Power 

Measurement 

Once the microbenchmarks are developed, the next step is the creation of test 

cases. Test cases are written using bash scripts that execute combinations of 

microbenchmarks and system parameters. Once the HPC system is 

instrumented with the power meter, the test cases are run and measured. 

Following, we explain how to scale the clock frequency using a bash 

command, and later we expose the power measurement methodology. 

5.1   System Parameter: Clock Frequency Scaling 

Modern general purpose processors can scale the frequency of each core 

individually. Access is through the Advanced Configuration and Power 

Interface (ACPI). It is possible to know, for a given core, the available 

frequencies and the frequency currently in use, respectively, reading the 

following two files in GNU/Linux: 
/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_

frequencies 

/sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq 



COMPUTER SCIENCE & TECHNOLOGY SERIES                                                                                           61 

To change the frequency it is possible to use cpufreq-selector command. For 

example, running the command “cpufreq-selector -c 0 -f 1000000” 

the core number 0 is set to 1 GHz. 

5.2   Power Measurement Methodology 

This section explains some definitions about power and energy, and the 

methodology typically used to measure the electrical power of a whole 

system, detailing the instruments utilised by us. 

Power is the rate at which the system consumes electrical energy. The watt 

(W) is the unit of real power, equivalent to 1 joule by second (1 J/s), and it is 

the product of current times voltage. Energy is the total amount of electrical 

energy that the system consumes over time, and is measured in joules or 

watt-hour (Wh). 

We are interested in power; and energy can be calculated by integrating 

power over time. We measure the power consumption of the whole shared-

memory HPC system. For this, we use the oscilloscope PicoScope 2203, the 

TA041 active differential oscilloscope probe, and the PP264 60 A AC/DC 

current clamp, all products of Pico Technology. The electrical signals 

captured by the dual-channel PicoScope 2203 are transmitted in real-time via 

USB to a laptop. The voltage is measured using the TA041 probe that is 

connected to one oscilloscope's input channel. The current of the phase 

conductor is measured using the PP264 current probe that is connected to the 

other input channel of the oscilloscope. Then, power is calculated as the 

product of measured voltage and current. The sample rate for the experiments 

was of 1000 Hz. Figure 2 shows the measurement connection diagram. 

6. Phase IV: Finding of Power-Influence Factors 

After running and measuring test cases, we proceed to find power-influence 

factors. Figure 3 shows the average power for the microbenchmarks 

developed to evaluate “Operation and Data Type” and “Cache Friendliness” 

factors. The microbenchmarks run at the maximum clock frequency. It can be 

observed that microbenchmarks with bad cache performance produce higher 

average power. Regarding the “Operation and Data Type” factor, it can be 

seen that the operation to perform has no significant impact on int data type, 

except when the operation is composed of multiple ones (multiOp, multiAdd 

and multiDiv). While floating point data types (float and double) have 

different size, their power behaviour are similar. Also, it can be seen that the 

operation to perform impacts on the average power produced, being these 

values generally lower than those for int microbenchmarks. 

The influence of “Data Type”, “Operands Accessing Mode” and “Cache 

Friendliness” factors are analysed in Figure 4. This chart shows the average 

power for the microbenchmarks developed to evaluate those factors at the 

maximum clock frequency. It can be observed that average power for load 
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and store microbenchmarks are similar when the cache has a good 

performance but this similarity does not maintain when cache miss rate 

increases. It can be seen that store instructions performed in main memory 

produces higher average power, particularly when using int and double data 

types. 

Figure 5 shows the average power for “Non-Uniform Memory Access” and 

“Cache Friendliness” microbenchmarks at the maximum clock frequency. It 

can be observed that average power hardly varies when the cache 

performance is good. In the opposite situation, that is when the cache has a 

bad performance, the use of the QPI interconnection link decreases average 

power. 

Figure 6 allow us to evaluate the power influence of “Resources Usage 

Efficiency” and “Cache Friendliness” factors. This chart shows the average 

power for the microbenchmarks developed to evaluate those factors at the 

maximum clock frequency. It can be seen that average power increases when 

resources are used efficiently, beyond the cache performance. 

The “Parallel Programming Model” influence factor is analysed in Figure 7. 

This chart shows the average power for each NAS benchmark executed at the 

maximum clock frequency. It can be observed that the programming model 

practically has no impact on the average power of each benchmark tested.  

 

 

 

Fig. 3. Influence of “Operation and Data Type” and “Cache Friendliness”. 

”.  

Fig. 4. Influence of “Operands Accessing Mode” and “Cache Friendliness”. 

 

Fig. 5. Influence of “Non-Uniform Memory Access” and “Cache 

Friendliness”. 
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Fig. 6. Influence of “Resources Usage Efficiency” and “Cache Friendliness”. 

 

 

Fig. 7. Influence of “Parallel Programming Model 

 

 

Fig. 8. Influence of “Voltage and Frequency Scaling” and “Cache Friendliness”.

 

Figure 8 allow us to assess the influence of “Cache Friendliness” and 

“Voltage and Frequency Scaling” factors. This chart shows the average 

power for int microbenchmarks with good and bad cache performance at 

different clock frequencies (for readability only four microbenchmarks are 

shown). It can be seen that average power increases when the clock 

frequency increases, regardless the cache performance. 

From previous analysis, we can confirm the influence of the studied 

factors on the average power of the support architecture: 

 When working with floating point data types (float or double), the 

operation to perform must be taken into account because it 

influences the produced average power. It does not occur the same 

with int data type. Beyond data type used, the ratio of the number of 

mathematical operations to the number of data read from main 

memory must be a factor to consider. 

 When the cache has a good performance, local and foreign accesses 

have similar power behaviours. Nevertheless, when cache 
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performance is bad, foreign accesses produce lower average power 

than local accesses. 

 Increase the efficiency in resources usage produces higher average 

power. 

 The parallel programming model is not a power influence factor 

(although it is an energy influence factor as we analysed in [3]). 

 The cache performance has no influence on the average power 

produced by load instructions. However, store instructions produces 

higher average power when they are performed in main memory, 

particularly when int and double data types are used. 

 Beyond the operands accessing mode, the operation to perform, the 

data type, the parallel programming model and the cache 

performance, the average power increases when the clock frequency 

increases. 

7.  Conclusions and Future Works 

In this work we present a methodology to characterise the power 

consumption of shared-memory HPC systems. The power characterisation 

can be used to know the power behaviour of the system under study in order 

to design power-aware application programs, and to be a support to reach the 

power prediction. We apply our methodology to characterise an Intel server 

platform and the results show that we can find an extended set of influence 

factors on power consumption. 

As future works, we will analyse the influence of C-states on power 

consumption of our platform. Later, we plan to find a way to automatically 

characterize a system, following our methodology. Furthermore, we will 

continue working on power prediction of HPC systems using the information 

obtained with the power characterisations.  
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